A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction

نویسندگان

  • Saifon Chaturantabut
  • Danny C. Sorensen
چکیده

This paper derives state space error bounds for the solutions of reduced systems constructed using Proper Orthogonal Decomposition (POD) together with the Discrete Empirical Interpolation Method (DEIM) recently developed in [4] for nonlinear dynamical systems. The resulting error estimates are shown to be proportional to the sums of the singular values corresponding to neglected POD basis vectors both in Galerkin projection of the reduced system and in the DEIM approximation of the nonlinear term. The analysis is particularly relevant to ODE systems arising from spatial discretizations of parabolic PDEs. The derivation clearly identifies where the parabolicity is crucial. It also explains how the DEIM approximation error involving the nonlinear term comes into play.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Model Reduction via Discrete Empirical Interpolation

Nonlinear Model Reduction via Discrete Empirical Interpolation by Saifon Chaturantabut This thesis proposes a model reduction technique for nonlinear dynamical systems based upon combining Proper Orthogonal Decomposition (POD) and a new method, called the Discrete Empirical Interpolation Method (DEIM). The popular method of Galerkin projection with POD basis reduces dimension in the sense that ...

متن کامل

Energy preserving model order reduction of the nonlinear Schrödinger equation

An energy preserving reduced order model is developed for the nonlinear Schrödinger equation (NLSE). The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. Preservation of the semi-discrete energy...

متن کامل

Localized Model Reduction in Porous Media Flow

This paper introduces a new localized approach to construct an efficient reduced order model for fluid flow simulation and optimization in porous media flow. For nonlinear systems, one of the most common methodology used is the proper orthogonal decomposition (POD) combined with discrete empirical interpolation method (DEIM) due to its computational efficiency and good approximation. Whereas re...

متن کامل

Application of POD and DEIM on Dimension Reduction of Nonlinear Miscible Viscous Fingering in Porous Media

A Discrete Empirical Interpolation Method (DEIM) is applied in conjunction with Proper Orthogonal Decomposition (POD) to construct a nonlinear reduced-order model of finite difference discretized system used in the simulation of nonlinear miscible viscous fingering in a 2-D porous medium. POD is first applied to extract a low-dimensional basis that optimally captures the dominant characteristic...

متن کامل

POD/DEIM Nonlinear model order reduction of an ADI implicit shallow water equations model

In the present paper we consider a 2-D shallow-water equations (SWE) model on a βplane solved using an alternating direction fully implicit (ADI) finite-difference scheme (Gustafsson 1971, Fairweather and Navon 1980, Navon and De Villiers 1986, Kreiss and Widlund 1966) on a rectangular domain. The scheme was shown to be unconditionally stable for the linearized equations. The discretization yie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012